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Thermocapillary convection in a rectangular cavity : 
asymptotic theory and numerical simulation 

By M. STRANI, R. PIVA AND G. GRAZIANI  
Istituto di Meccanica Applicata, Universitk di Roma, Rome, Italy 

(Received 13 April 1982 and in revised form 4 January 1983) 

The steady motion of a Newtonian fluid in a rectangular enclosure open on its upper 
side is considered under the action of thermocapillary forces due to surface-tension 
gradients along the free surface. An asymptotic solution, in the limiting case of the 
aspect ratio A +  0, is found and discussed for the cases where the surface deformation 
may be neglected, that  is for contact angles at the lateral walls equal to &I and very 
small values of the crispation number. The flow field has also been analysed in a wide 
range of the governing parameters A ,  Mg, Cr, by a computational model particularly 
appropriate to simulate free-surface flows. For A < 1 the numerical results confirm 
the behaviour predicted by the asymptotic theory, while for A 3 1 several charac- 
teristic features of the flow-field structure are emphasized. For increasing Mg, the 
surface layer under the free surface maintains in the mid-section a constant value, 
dependent only on A ,  and decreases together with the thermal boundary-layer 
thickness near the lateral walls. For increasing A ,  the motion remains confined in a 
region near the free surface; hence the overall Nu, starting from the pure conduction 
value (Nu+l  as A+O) inccreases with A ,  reaching a maximum, to tend again to 
unity as A + co. The surface deformation, a t  least for very small values of the 
crispation number, seems to have a negligible influence on the qualitative aspects of 
the flow-field structure. 

1. Introduction 
Thermocapillary convection, driven by surface-tension gradients, may be generated 

in an open rectangular cavity with differentially heated lateral walls by the 
temperature gradients occurring a t  the free surface. 

These flows, known as Marangoni flows, are, in general, intrinsically coupled with 
convective flows driven by the buoyancy forces that originate from the same 
temperature gradients. 

Therefore thermocapillary convection is rarely found by itself, even in those 
technological applications where its presence is more relevant, as in microgravity 
conditions, e.g. material processes in space (Ostrach 1982) or in fields of very small 
dimensions, e.g. crystal-growth melts (Schwabe 1981). However, while for natural 
convection a satisfactory understanding of the flow-field structure in its various 
regimes has been reached in many studies (Gill 1966; Cormack, Leal & Imberger 
1974a; Cormack, Leal & Seinfeld 1974b), for thermocapillary convection a systematic 
analysis is still missing and phenomena occurring in a wide range of the relevant 
characteristic parameters (aspect ratio, Marangoni, Prandtl and crispation numbers) 
need to be interrelated to give a self-consistent representation of the flow. 

Most of the experimental investigations (Schwabe, Scharmann & Preisser 1979 ; 
Schwabe 6 Scharmann 1981 ; Chun 1980; Chun & Wuest 1978) trying to emphasize 
thermocapillary convection have been performed in small-dimension fields with 
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ground-level gravity force and large bulk temperatures, that  is in conditions for which 
natural convection and free-surface radiation may give a significant contribution. 
The few experiments actually conducted in reduced gravity, as existing in orbiting 
spacecraft (Bourgeois & Brasheors 1977), or during free fall in a drop tower (Ostrach 
& Pradhan 1978), apart from confirming the importance of Marangoni flows, are not 
substantiated by measurements that  give information about the peculiar features of 
the flow field. Though the assumption of zero gravity does not imply any further 
difficulty, numerical solutions (Chang 1978; Chang & Wilcox 1976; Clark & Wilcox 
1980) are in general devoted to  combined convection problems, with the aim of 
simulating real conditions for comparison with experimental results. I n  these studies 
attention is mainly paid to  the generation of the overall recirculations without specific 
interest in the critical regions near the walls, and the transition, a t  larger Marangoni 
numbers, to a boundary-layer regime. 

Thermocapillary convection has been isolated in the present study to analyse the 
influence of the characteristic parameters on the flow field. The analytical results, 
obtained through an asymptotic theory in $3,  describe the behaviour of the flow field 
when Cr is very small, for values of the aspect ratio A 6 1 and arbitrary values of 
the Reynolds number. The flow region is separated into a core region and two endwall 
regions, where asymptotic expansions of the unknown variables in powers of the 
aspect ratio A are assumed. A first approximation of the free-surface configuration 
is also given, together with an appropriate evaluation of the range of the various 
non-dimensional parameters for which the results of the asymptotic theory may be 
of practical use. 

The asymptotic solutions and the physical trends discussed in $3  are confirmed by 
the numerical results described in $4, which have been obtained by a computational 
model based on finite differences in curvilinear coordinates fitting the free-surface 
deformation. The wider investigation, performed through the numerical simulation, 
for values of the parameters outside of the range required by the asymptotic theory, 
led to a systematic collection of results, which have been critically analysed and 
correlated to formulate, in $ 5 ,  a tentative description of the flow-field structure in 
its different regimes. 

2. Mathematical formulation 
The steady plane flow field of an incompressible Newtonian fluid (+ )  in a 

rectangular enclosure open on its upper side (figure 1) is considered. The interface 
y’ = H’fz’) which separates fluid ( +)  from fluid ( - ) ,  is an unknown of the problem, 
to be determined together with the field-dependent variables. 

The two lateral walls are kept a$ different temperatures Th and TL, while the 
bottom of the enclosure is assumed to  be thermally insulated. I n  these conditions 
(Th + TL) a convective motion is induced, in general, under the combined action of 
buoyancy (natural convection) and the shear stress exerted a t  the free boundary by 
a temperature-induced surface-tension gradient along the interface itself (thermo- 
capillary convection). The relative importance of these two types of convection may 
be estimated by the value of the modified Bond number %, that  is the ratio between 
the Grashof number Gr and the Marangoni number Ma (Ostrach & Pradhan 1978). 

A general mathematical model for the coupled motion of the bulk and the surface 
phases has been presented previously (Bedaux, Albano & Mazur 1976; Napolitano 
1978) and expressed in general tensor form (Strani & Piva 1982) to  allow the use of 
curvilinear non-orthogonal coordinates. I n  fact these coordinates are more suitable 
to fit all the boundaries, in particular the free surface, to obtain more accurate 
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FIQURE 1 .  Sketch of the geometrical configuration of the problem. 

numerical solutions. The main simplifying hypotheses on which the present study is 
based are now explicitly discussed. A zero modified Bond number, which is physically 
acceptable in a microgravity environment or for very small linear dimensions of the 
cavity, has been assumed in order to isolate thermocapillary convection, as previously 
discussed. The thermal and mechanical effects of the fluid ( - ) on the interface phase 
are assumed to be negligible, with the exception of a constant known pressure. This 
hypothesis is approximately valid, for instance, when the fluids ( + ) and ( - )  are 
respectively a liquid and a gas. Consequently the motion of fluid (+ ) is considered 
to be under the influence of only the forces exerted by the interface layer. 

Continuous values, between the bulk and the surface phases, of velocity and 
temperature at the free surface are assumed, together with zero values of the surface 
thermal conductivity and viscosity. The abovementioned general mathematical 
model gives an opportunity to account for discontinuities in the values of velocity 
and temperature at the interface, as well as for the existence of dissipative processes 
on the interface, while the asymptotic theory presented in this paper could be easily 
developed under these more general conditions. Numerical evidence has shown (Piva, 
Strani & Graziani 19Sl), however, that the main features of the flow-field structure 
are scarcely affected by these last assumptions. The resulting gain in simplicity is 
therefore favourable for this first study on the flow-field structure. The non-dimensional 
form of the Navier-Stokes equations and boundary conditions that follow from the 
complete system, after the above assumptions, are as follows: 

u(Ek = 0 mass balance, (2.1) 

(UlaUk-f lhk)(k  = 0 momentum balance, (2.2) 

(ukT-qk))lk = 0 thermal-energy balance, (2.3) 

where uk are contravariant components of the velocity, the Eckert number has been 
assumed to be negligible and the heat flux qk, and stess tensor uhk are given by the 

(2.4a) 
1 constitutive equations 

ghkTh 

(2.4b) 
12-2 
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wherep is the pressure. The metric-tensor components ghk and the Christoffel symbols 
appearing in the covariant derivatives may be easily derived by a singled-valued 
continuous and differentiable map 

( 2 . 5 ~ )  

(2.5b) 

which defines a system of generalized coordinates (tk) (Latin indices run from 2 to 
3 )  in the physical plane normal to the axis xl, where the interface coincides with a 
portion of the coordinate plane t3 = 1 (see figure 1). Different lengthscales I and h 
have been assumed respectively for the x’ and y’ directions, and the aspect ratio is 
defined as A = hjl. The Reynolds number Re and Prandtl number Pr that appear in 
the above system of equations are defined by 

where p is the density, 6’ the surface tension, and p and h are viscosity and thermal 
diffusivity coefficients. The reference velocity in Re has been specified, following 
Ostrach (1982), by the driving mechanism of the flow at the free surface: 

We will discuss later in 55 the range of validity of this choice, which seems to be more 
extended than originally proposed by Ostrach. The resulting expression of the 
Reynolds number is often indicated in the literature as ‘ surface-tension Reynolds 
number ’ while its product times Pr is usually called the Marangoni number Ma. The 
boundary conditions at the free surface y3 = 1 are 

u3 = 0, (2.8a) 

u 3 3  1 
g33 Re 

u 1  

-+-crab; = 0, 

q + - - , 2  = 0, 
(9 ) Re 

( 2 . 8 b )  

( 2 . 8 ~ )  

93 = 0, ( 2 . 8 d )  

where the curvature-tensor component hi is given by the inverse of the local radius 
curvature of the free surface. The surface tension cr is assumed to be given by the 
linear relation in temperature 

1 
Cr g = ---T (2.9) 

where the crispation number Cr is given by 

(2.10) 
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Finally the following boundary conditions hold a t  the fixed solid boundaries : 

u2 = u3 = 0, T 3  = 0 (53 = O ) ,  

U' = u3 = 0, T = c2 ( E 2  = 0 , l ) .  

(2.11a) 

(2.11b) 

3. Asymptotic solution 
The free-surface shape H'(x') and, with it, the integration domain 9 have to be 

considered as unknowns in the solution of a thermocapillary-flow problem in a 
bounded region. 

Since, in the limit Cr+O, the free-surface shape has the trivial solution H'(x') = h 
and 9 = go = {(xo, yo)[ 0 d xo Q 1 ,  0 < yo Q h}, profitable use can be made, in the 
general case Cr $; 0, of the domain perturbation method (Joseph & Fosdick 1972), 
whose main features, when applied to  the present case, are here briefly recalled. 

Under the group of hypotheses mentioned in $2, the governing bulk conservation 
equations (2.1)-(2.3) become, when reference is made to a Cartesian system of 
coordinates, 

Auu, + wu, = ( A  Re)-l( - Ap,  + A2u, xx + u, yy), (3.1) 

(3.2) 

Auu, , +v, = 0, (3.3) 

AuT + v T  = ( A  Re Pr)-l (A2? xx + T yv) (3.4) 

Auv, , + 2/21, = ( A  Re)-' ( - p ,  y +  A2v, xx + v, yy), 

in 9 = {(x,y)IO < x Q 1 , O  < y < H(x)}, while from (2.8)-(2.11) the following boun- 
dary conditions result : 

T = O ,  u = v = O  ( x = O , I ) ,  (3.5a) 

T y = 0 ,  u = w = o  ( y = O ) ,  (3.5b) 

-AuH,,+v = 0, 

- A 2 H , x T x + T y  = 0 

The remaining boundary condition a t  y = H(x) gives the differential equation for the 
free-surface shape 

-p+  (1  +A2Hfx)-1[2A3H~,u, . -2AH,x(u , ,+Av,x)+2v , , ]  

= (Cr-1- T) AH, xx (1 + A W , , ) - t ,  (3.5 d )  

to be solved with the boundary conditions 

H,x = 0 (5 = 0, l ) ,  

and the condition on the total-volume conservation 

[ H(x)dx = 1.  

(3.5e) 

An analytical dependence on crispation number of the unknown functions of the 
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x = 50, y = Y o H ( X 0 ,  Cr) (3.6) 

between the integration 9 and the reference domain go is considered. 

the map (3 .6) ,  is expanded in the parameter Cr according to 
The unknown vector of the free-boundary problem, when evaluated in go through 

By substituting (3 .7)  into (3.1)-(3.5), an infinite sequence of differential equations 
and boundary conditions for the unknowns, given by the ‘total’ nth derivatives 
( )Lnl with respect to Cr at Cr = 0 keeping xo, yo fixed, is found. 

3.1. Asymptotic solution (A+O) for the zeroth-order expansion in Cr 
By a straightforward application of the domain perturbation method, one obtains, 
a t  the zeroth order, fw1 = 1, 

while do), v[Ol, 

boundary conditions which are the limit, as H,,-+O, of (3.1)-(3.5). 

order solution) 

are found to satisfy a system of differential equations and 

)I0] is dropped for the zeroth- After the positions (hereinafter the superscript ( 

(3.8) u = 1C/,W v = - A $ , x ,  

this may be written as 

(3.11) 

with the boundary conditions 

T = x, $ = $,x = 0 (x = 0, l),  (3.12a) 

(3.12b) 

( 3 . 1 2 ~ )  

$,yy  = - I ] x  (Y = 1). (3.12 d )  

The problem (3.10)-(3.12), in the limiting case A+O with both Reynolds and 
Prandtl numbers fixed, is analysed by the standard method of matched asymptotic 
expansions, following the procedure successfully applied to the study of natural 
convection in closed enclosures by Cormack et al. ( 1 9 7 4 ~ ) .  

Equations (3.10)-(3.12) in the limit A-tO have a solution for the stream function 
@ which cannot satisfy the boundary conditions (3.12a) near the endwalls. It can 
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therefore be expected that, as A+O, a central region (core) develops, bounded by 
two regions near x = 0 and x = 1 where the structure of the flow field is different. 
This assumption is moreover confirmed by the numerical results (presented in tj 4), 
showing that, for small values of the aspect ratio, a core region, where the streamlines 
are nearly parallel to the x-axis, exists. A substantial deviation from this structure 
only occurs near the vertical endwalls in regions whose lengthscale is O(h).  

The asymptotic solution for the velocity and temperature field in the core and the 
end regions will be separately analysed and successively composed by use of the 
standard method of matched asymptotic expansions. I n  both regions the following 
simple expansions of the solutions in powers of A will be assumed: 

@ = @k A”, w = W” A”, T = Tk A”, (3.13) 

where k = 0, 1 , 2 ,  . . . and the summation convention over repeated indices holds. The 
solution method presented below, although independently developed by the 
authors, turns out to be a particular case, for Cr = 0, of the method recently proposed 
by Sen & Davis (1982). Therefore reference is made, when possible, to their work. 

3.1.1. TheJlow in the core region. By substituting the expansions (3.13) of the field 
variables into (3.9)-(3.11) and into the boundary conditions (3.12c, d )  and, by 
equating terms of the same order in A ,  a similar form of the functions @ and T in 
%he core is obtained for each k: 

where 

@ = K ( ’ 2 -  1 TY Q3), (3.14) 

(3.15) 

K,  = ck A“, (3.16) 

K ,  = b, A“, (3.17) 

T = K,x- (K,A)2Re Pr(&y4-&y3) +K,, 

and ck, b, are constants (depending on Re and Pr) to be determined, as shown below, 
through asymptotic matching with the solution near the endwall. Equations (3.14) 
and (3.15) coincide, when A = 0, with equations (3.5) and (3.6) of Sen & Davis (1982). 

An O( 1 )  approximation of the temperature in the core does not depend on y, and, 
since c, = 1 (3.21c), the temperature drop occurs essentially across the core. In  the 
present asymptotic solution the heat transfer is hence dominated by pure conduction. 
It must be pointed out that  this is not due to  a ‘pure conduction’ limit with A fixed 
and Re+O, but is achieved for A-tO, with arbitrary but fixed values of Re. 

The O(1) solution (3.14), (3.15) for the flow field in the core is immediately 
recognized to be coincident with the one proposed by Levich (1962). The substitution 
of (3.14) into the bulk momentum-conservation equations, gives 

(3.18) 

The 0(1) approximation of (3.18) gives the longitudinal pressure gradient, not 
explicitly formulated by Levich. The resulting jump of pressure across the free 
surface is balanced by a curvature of the free surface that tends to zero as Cr+O 
(see ( 3 . 5 4 ) .  

The above observation overcomes the criticism expressed by Yih (1968) with regard 
to the Levich solution. 

A further comment on the adequacy of Levich’s approximate solution can be made. 
As will be shown below, the first correction to the 0(1) value K ,  = 1 is O(A3).  
Therefore Levich’s solution is a good approximation of the flow field in the core, as 



354 M .  Strani, R. Piva and G. Graziani 

Cr+O, even if account is taken of a relatively small amount of convection in the 
heat-transfer process. In  fact (3.14), (3.15) show that the convective heat flux in the 
longitudinal direction is exactly balanced, a t  O ( A 2 ) ,  by the onset of conduction in the 
y-direction, while, a t  the same order, the velocity flow field and the longitudinal 
temperature gradient are not modified with respect to the O( 1) approximation. 

Finally a remark has to be made on the different features between the present 
asymptotic thcory for A-tO,  Re fixed and the solution for A fixed and Re-tO. In  the 
present case the temperature drop occurs essentially across the core region, while in 
the end regions the flow is simply turned through 180' as required by the boundary 
conditions on the lateral walls. On the other hand, the numerical results of $ 4  indicate 
that, for A fixed and increasing values of Re, nearly all the temperature drop occurs 
in two thin layers near the endwalls, mainly near the cold wall, which thus provide 
the driving force for the flow, while the core ensures the inflow-outflow from the 
lateral boundary layers. 

3.1.2. TheJlow near the endwalls. The coefficients c,, bk of the core solution are 
evaluated through the matching of the core solution (3.14), (3.15) with the asymptotic 
solutions near the end walls. The development of these solutions gives moreover an 
opportunity of discussing some interesting features of thermocapillary flows. 

I n  agreement with the above considerations, no boundary-layer region near the 
endwalls exists : consequently the characteristic lengthscales in each direction are 
O(h) ,  and the proper non-dimensional variable for the longitudinal direction is 

X 6 = - near the cold wall, (3.19a) 
A 

1-x  
A 

,g=- near the warm wall, (3.19b) 

while, instead of the temperature, it is convenient to make use of the variables 

O c ( 6 ,  y) = T(5, i )  near the cold wall, (3.20 a )  

(3.20b) 

As for the core region, the simple expansions (3.13) of the unknown functions 
@, w ,  8 are assumed to be valid. By substituting these expansions into (3.10)-(3.12), 
and by equating terms of the same order in A ,  an infinite sequence of differential 
equations and boundary conditions for the unknown functions @,, wk,  8, is obtained. 
Since the method of solution strictly follows the one applied to natural convection 
by Cormack et al. (1974), and the set of differential equations and boundary conditions 
may be found as a particular case, for Cr = 0, of the corresponding ones presented 
by Sen & Davis (1982) we omit them here (for further details see Strani et al. 1982). 
It is however worthwhile listing here the main results of our analysis. I n  particular 
the decomposition of the flow-field variables a t  the various orders and their 
quantitative evaluation up to O(A3)  - introduced by Cormack et al. (1974) for the 
natural convection problem and not considered by Sen & Davis (1982) - is the basis 
for the subsequent discussion on the trends of the flow field a t  increasing Re. 

Ow(f ,  y) = 1 - T(5, y) near the warm wall. 

At O(1) 
8; = 8: = 0, (3.21 a )  

@; = $@ = @"(5,Y)> (3.21 b) 

c,, = 1 ,  b, = 0. (3.21 c )  
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FIGURE 2.  O ( A )  correction on stream function : streamlines. 
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FIGURE 3. O ( A 2 )  temperature correction 6'; x lo2: isotherms 

The field @&y) has been evaluated numerically. The streamline plot, as i t  is 
identical with the one presented in figure 3 of Sen & Davis (1982), is here omitted. 

BC 1 -  - e;N = g, ( 3 . 2 2 ~ )  

@: = -$;N = @l(&y) = Re$i+RePr@:, (3.226) 

C, = b, = 0. (3.22 c )  

The functions @i, 8; are found numerically, and the corresponding streamlines are 
plotted in figures 2 (u-b). 

Both corrections, of the same order of magnitude, give rise to  a set of counter- 
clockwise closed streamlines located near the endwalls. 

At O(A)  
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FIGURE 4. O ( A 2 )  correction on stream function : streamlines. 

3 x ' /h $; x 105 
0 

At O ( A 2 )  

0: = -@" = 02((, y) = RePrBi((,y), 

$: = $? = $2(5r y) = Re2 $1 -k Re2 Pr $:-I- Re2 Pr2 +I:, 

(3.23a) 

(3.23 b )  

c 2 = 0 ,  b --RePr. ( 3 . 2 3 ~ )  
- 1  

- 120 

The numerically obtained isolines of O;, $;, @:, are plotted respectively in figures 

The strong dependence of 61 on vertical position clearly indicates a departure from 
the pure-conduction regime. The gradient 01, is located near the end regions, with 
opposite signs a t  the free surface and the bottom of the enclosure. The three 
components $;, $:, $'; give rise to a correction of the same type, that is an upward 
stream located near ( = 1 .  

3, 4 (a ,  b ,  c) .  



Thermocapillary convection in a rectangular cavity 357 

h 
0 

Y '  - 
h 

e; x 1 0 3  0 

1- 

I I 
3 

x'/h 
1 2 e; x 1 0 3  0 1 

L 
2 3 

x'/h 

FIQURE 5. O(A3) temperature correction : isotherms. 

At O(A3) 
@ = Op = O,(5, y )  = Re2 Pr 6; + Re2 Pr2 S;, 

b, = -ic3 = 0.43 . . . x 10-,Re2 Pr2. 

( 3 . 2 4 ~ )  

(3.24b) 

The numerically obtained isotherms are plotted respectively in figures 5 (a,  b). It 
may be noticed that both corrections modify the longitudinal temperature gradient 
only near the endwalls. 

At o ( ~ 4 )  

and, as a consequence of the corresponding matching conditions, 

1 c4 = 0. 

The next correction on the core temperature gradient is therefore 0 ( A 5 ) .  Owing to 
the correspondingly high number of numerical solutions, the evaluation of further 
corrections has not been performed. 

3.1.3. Analysis of the $ow-field features. The expansion for the stream function 

$ ( C , W )  = $o& A Re($; + Pr$F) + (ARe)2 ($;+ Pr $;+ Pr2V.)  +O(A3) (3.25) 

and for the temperature gradient 

Occ, w) 
T!C; w, = &* = 1 + A  Re Pr Oi,,+ ( A  Re)2 (Pr O;, <+ Pr26;, ,) +O(A3) (3.26) 

(where + and - hold for c and w respectively) obtained by adding the various terms 
of the end-region solution, describe, owing to the matching conditions, the entire flow 
field in the cavity. The qualitative features of the above solutions are here discussed. 
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I I I 
3 1 2 

x' fh  (a) Cold wall 

- Y' 
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-2 - 1  0 x'lh 
( b )  Warm wall 

-3 

FIGURE 6. Streamlines of the flow field for Pr = 1, A Re = 25:  0, + o ;  A, +lo A Re(+; + Pr +:) ; 
0,  +ok A Re(+;+ Pr $;) + ( A  Re)2 (+;+ Pr +:+ Prz + I : ) .  

First it  may be observed that, in view of the similar behaviour of $;, $; and of 
$;, $;, $:, the flow-field qualitative structure is not affected, at least up to O(A2),  
by Pr, which only controls the departure of the lateral thermal gradient from 
pure-conduction-regime value of units. 

In  figures 6 (a ,  b )  the effect of O(A Re) and O(A2 Re2) corrections on $o are analysed, 
assuming Pr = 1 and A Re = 25. The O(A Re) correction increases the recirculating 
velocity near the cold wall, while i t  has an opposite effect near the warm wall. The 
contributions $; and +;, even if qualitatively similar, are due to different physical 
phenomena. The increase (decrease) of recirculating velocity near the cold (warm) 
wall, when due to $;, is the first-order consequence of the increasing contribution 
of inertial with respect to diffusive terms. The similar variation, when due to $;, 
is connected to the O(A Re) increase (decrease) of the temperature gradient a t  the 
free surface near the cold (warm) wall, and hence of the local driving force. The local 
variation of the temperature gradient is, in turn, due to the increasing contribution 
of convective terms in the temperature diffusion equation. 

I n  a similar way the effect of the O(A2Re2) corrections could be explained, 
accounting for the mixed convection of vorticities wo, w1 along the flow field $o, $1, 

and for the local variation of the driving force owing to  the O(A2 Re2) correction on 
the temperature gradient. 

The combined effect of O(ARe) and O(A2Re2) corrections may thus give rise, 
especially near the cold wall, to locally closed streamlines, as shown in figure 6(a). 
Moreover, one can recognize a tendency for the horizontal scale of the regions near 
the endwalls to decrease, with a corresponding increase in the recirculating velocity. 
This trend for increasing values of A Re is consistent with the endwall boundary- 
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0.041 

-0.41 
(a) Cold wall 

( b )  Warm wall 1-0.04 

FIGURE 7 .  Surface temperature and velocity profiles of the flow field for Pr = 1 ,  A Re = 25, A = 0.01. 
The plots (i), (ii) and (iii) correspond respectively to the 0(1), O ( A )  and O(A2) estimates of surface 
velocity or temperature. 

layer-type structure that characterizes the flow, as shown in $4, for large values of 
A Re. 

The effect on the temperature gradient along the free surface is shown in figures 
7 (a ,  b ) .  The O ( A  Re) correction gives rise to a local increase (decrease) of the horizontal 
temperature gradient, near the cold (warm) wall, while as a consequence of the 
O(A2 Re2) correction the temperature gradient first increases and then decreases, away 
from both endwalls. 

The resulting increase with A Re of the longitudinal temperature gradient near the 
end walls is consistent with the development there of thermal boundary layers, as 
shown by the numerical solutions in $4. 

As a further result of the asymptotic theory the correlation between the Nusselt 
number, that is the non-dimensional value of the longitudinal heat flux at the cold 
wall, and Re, Pr, A may be evaluated. By definition 

JohAz [ 2'=0 dy' 
N u  = 

A(T&-T:)A 
(3.27) 
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Nu = 1 + A  Re Pr OL, [dE+ A2 Re2(Pr lo1 O;,,dy+ Pr2 Jol 8:. ,dy)+O(A3). (3.28) s,‘ 
The corrections f3;l and 6; do not contribute to the heat flux, since it can be shown 

that 

Hence, from a numerical integration along y, for E = 0 ,  of the t?;,E distribution, it 
follows that 

Nu = 1 + 5.96 x 10-*A2 Re2 Pr2 + O(A3),  (3.29) 

which gives the first correction to the pure-conduction value Nu = 1 .  This result may 
be used as a further illustration of the difference between a pure-conduction limit for 
Re-tO with A fixed, and the present asymptotic expansion where Nu = 1 may be 
achieved even for large values of Re and Pr, provided that A is sufficiently small. 

3.2. Ranges of validity of the asymptotic solution 
From a mathematical point of view a convergence criterion should be developed to 
determine, for given values of P r  and Re, the range of A where the present asymptotic 
solution holds. Even if a rigorous convergence criterion is not obtained, it is possible 
to determine the range of values of A and Cr where the illustrated results may be 
of practical use. 

First the numerical solutions for Po, wo near the endwalls show that streamlines 
as well as equivorticity lines are parallel to the t a x i s  for 6 3 2. Thus the parallel 
flow in the central core can be established if 

A 5 0.25. (3.30) 

Moreover, Re and Pr will be chosen in such a way that higher-order terms in the 
asymptotic expansions are small with regard to the first : if 0.1 is taken to be small 
relative to 1 it is found that the following conditions must be satisfied 

ARe 5 lo2, (3.31) 

A2 Re2 Pr2 5 lo3. (3.32) 

On account of the above conditions and of the values obtained for c,, b,  the 
temperature gradient in the central core, given by (3.15), 

Kl = 1-0.86 ... x 10-3Re2Pr2A3+O(A3) (3.33) 

is found to be dominated by the first term. This confirms the present solution to be 
a proper model of the thermocapillary flow when pure conduction is the dominant 
mechanism of the heat-transfer process. 

Finally, in order to evaluate the range for Cr, the free surface O(Cr)  correction is 
evaluated. By a straightforward application of the domain perturbation method, 
( 3 . 5 4  gives a t  O(Cr) 

Hence, in the core region where do] = 0 and p[O1 = -3 2(KlIA) (Z-CL 

A f??& + (pro] - 2 ~ t y ] ~ , = ~  = 0. 

(3.34) 
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that  is Hrll = 1/O(A2) as A+O. Hence, by setting Hrll = RI1l/A2 we get 

(3.35) 

Equation (3.35) shows that, if we want the O(An) expansion of the zeroth-order 
solution $Lo], f l O l  to be an  approximate evaluation of the flow field, it must be 

Cr = O(An+3).  (3.36) 

I n  particular, for n = 0, Cr = O(A3),  as assumed by Sen & Davis (1982). It may be 
observed that, under this condition, (3.35), accounting for (3.34), gives a first-order 
correction on the free-surface shape that corresponds to  the one given by equation 
(4.27) of Sen & Davis. 

If condition (3.36) is not satisfied, the computation of higher-order terms for the 
expansion (3.7) in Cr is required. This can be done, in principle, by a numerical 
integration of the differential systems that result, at O(Crn),  from the domain 
perturbation technique. On the other hand it may be shown that, by setting Cr = CA3, 
an expansion in A of the various orders in Cr may be performed. I n  this case (3.7) 
gives an expansion in A which may be reduced to  the one proposed by Sen & Davis. 

Since the main purpose of the present work is a preliminary analysis of the trends 
of the thermocapillary flow field a t  increasing Reynolds numbers, which, a t  least for 
moderate values of Cr and contact angles nearly equal to  in, seem to be scarcely 
affected by the free-surface deformation, no attempt has here been made to evaluate 
the O(Cr) flow field. 

The rough estimates of the ranges of validity here mentioned will be checked and 
discussed later in $4 in comparison with the numerical results. 

4. Numerical results 
4.1. Computational model 

The main features of the computational procedure, described in detail in Strani & 
Piva (1982), are here briefly recalled for the sake of completeness. 

For the finite-difference integration of the bulk conservation equations (2.1 )-(2.4) 
the field variables uk, p and T are localized, in the transformed plane, on independent 
meshes shifted with respect to a reference cell, to reproduce the proper extension of 
the MAC method (Harlow & Welch 1965) to curvilinear coordinates (Piva, Di Carlo 
& Guj 1980). I n  particular, the contravariant velocity components, directly connected 
to  the mass fluxes across the cell sides, are located a t  the cell midsides, while the 
pressure and temperature are located at the centre of the cell. 

The metric coefficients, associated with all variables in the equations, need to  be 
calculated both a t  the centre of the cell and a t  the cell midsides, that  is in a grid twice 
as fine as the one adopted for the physical variables. The momentum- and energy- 
conservation equations for the fluid bulk are integrated by a standard time-dependent- 
like iterative procedure which satisfies, a t  each time step, the mass-conservation 
equation up to a certain level with successive iterations over a simplified set of 
equations (Hirt & Cook 1972). The boundary values of the field variables are obtained, 
a t  each iteration step, by a finite-difference approximation of (2.8a, c ,  d) ,  and (2.11). 
Finally, at each time step, the geometrical configuration H ( z )  of the interface, 
consistent with the approximate flow field, is determined by the integration of (2 .8b)  
through a semi-analytical technique, described in Strani & Piva (1982). 
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FIGURE 8. u-velocity ( a )  and temperature (b )  profiles in the core, Cr = 0, 
A = 0.2. Comparison with the asymptotic theory. 

The numerical calculations, for the lower Reynolds numbers, have been performed 
on a 20 x 10 or 10 x 20 regular mesh, depending on the value of the aspect ratio of 
the cavity. Locally finer meshes have been adopted by an appropriate choice of the 
streching functions in ( 2 . 5 ~ )  and (2 .5b) ,  to increase the numerical resolution in the 
lateral regions where strong temperature and velocity gradients occur at large 
Reynolds numbers. In  these conditions an upwind finite-difference scheme has also 
been used for the convective terms. Finally, a constant Prandtl number, Pr = 1 ,  has 
been assumed in the calculations. 

4.2. Comparison with the asymptotic theory 

Let us consider first the flow field in a shallow cavity, that  is a cavity with an aspect 
ratio A+O, as required by the asymptotic theory developed in $3. 

An aspect ratio A = 0.2 sufficiently small to satisfy the required condition of 
validity ( A  5 0.25)  for the asymptotic theory, but large enough to  keep the computer 
effort reasonably low, has been considered for the numerical solutions. A zero 
crispation number and a in value of the contact angle a t  the lateral walls have been 
also assumed in a first set of numerical solutions in order to  match the hypothesis, 
assumed in $3, of negligible surface deformation. 

The computed flow field presents the same general characteristics illustrated in $3, 
a t  values of the Reynolds numbers which satisfy the upper bounds ARe < lo2 and 
A2Re2 Pr2 < lo3 for the asymptotic expansions truncated at second order to be valid. 
A parallel flow dominates the central part of the flow field, while the lateral 
recirculations are confined in two O(A)  layers near the cavity walls. The u2 = u 
velocity and temperature profiles along the normal to  the free surface in the central 
section of the enclosure (figure 8) are in perfect agreement with the corresponding 
theoretical core solutions (3.14), (3.15) shown on the same figure. 

The surface temperature distribution (figure 9, Re = 5 0 )  clearly shows the prevailing 
effect of the first-order correction O1 on the pure-conduction regime O,, that  is a 
symmetric temperature increase over the linear distribution, whose gradient is 
concentrated near the endwalls (figure 7) .  The second-order temperature correction 
6,, which is antisymmetric - producing an increase (decrease) of the temperature 
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FIGURE 9. u-velocity profiles in the central region a) and surface temperature 
distribution ( 6 )  for increasing values of Re; Cr = 0, A = 0.2. 
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FIGURE 10. Surface velocity distribution for increasing values of Re; 
Cr = 0, A = 0.2: ( a )  Re = 50; (b )  125; (c) 500; ( d )  1000; ( e )  2000. 

gradient near the cold (hot) wall-has a significant, but still small, effect a t  the 
Reynolds-number value under consideration. 

Analogously the surface velocity distribution (figure 10, Re = 50) is essentially 
given by the zeroth-order solution +o, corresponding to the first-order temperature 
correction 01, with a weak effect of the first-order correction which is in turn 
induced by the second-order temperature correction 0,. 

Very good agreement with the asymptotic solution is found even for Re = 125, 
which is near the upper limit of validity of theoretical results. The effect of the 
second-order temperature correction O2 on the surface temperature distribution now 
becomes significant, and gives temperatures even lower than pure conduction near 
the warm wall (figure 9, Re = 125). Consistently the first-order solution ll.l modifies 
the surface velocity distribution (figure 10, Re = 125). The appearance of the 
second-order correction +2, which tends to give boundary-layer-type flows near the 
endwalls (see figure 71, can also be observed, but i t  will be more evident for larger 
Reynolds numbers. 

The comparison between theoretical and numerical results for Re larger than the 
limit of validity may be performed only by analysing some characteristic or global 
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FIGURE 11. Surface velocity and temperature gradient in the core region 
as a function of ARe, with Cr = 0, A = 0.2. 

quantities of the flow field. I n  particular, let us consider the surface value of the 
u-velocity or the related temperature gradient in the core region. 

From (3.14) and (3.15) the asymptotic theory gives for these quantities 

which, in turn, assumes the form (3.33) discussed in $3. The analytical and the 
numerical results for the above two quantities are plotted as functions of ARe (for 
A = 0.2) on a logarithmic scale in figure 11.  The analytical expression matches the 
numerical results perfectly up to Re x 125 (that is, approximately the presumed limit 
of validity of the theory) and clearly diverges for increasing Re, as the influence of 
higher-order terms becomes larger in the theoretical solution. 

An analogous behaviour is shown by the Nusselt number, which accounts for the 
global heat transfer along the cavity. The analytical expression (3.29) given by the 
asymptotic theory is compared in figure 12 with the numerical results. The diagram 
shows a fair agreement up to the mentioned limit of Re z 125, considering that in 3.29 
the error is O(A3) ant not O(A5) as for the expression (3.33). 

4.3. Effect o f f  ree - surf ace deformation 

If the hypothesis of zero crispation number, considered in $4.2, is removed, the free 
surface is allowed to  move during the transient motion and to  assume a deformed 
configuration, with respect to the rectilinear one, at steady-state conditions. 

The case A = 0.2, Re = 125 discussed in $4.2 for Cr = 0, has been considered here 
again for a relatively large value of the crispation (Cr = 0. l ) ,  to emphasize the surface 
deformation and its influence on the bulk flow field. 

The function H ( x ) ,  which provides the free-surface shape through the numerical 
calculations, is plotted in figure 13 together with the theoretical O(Cr) estimate given 
by (3.34). The agreement between the theoretical and the numerical values is very 
satisfactory, a t  least for cases in which the deformation of the surface is not too large. 

The surface temperature and velocity distributions, in comparison with those 
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FIGURE 12. Nusselt number as function of ARe, with Cr = 0, A = 0.2. 
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FIQURE 13. Free-surface configuration when Cr = 0.1, A = 0.2, Re = 125; comparison of 
numerical results with the asymptotic theory. 

previously obtained for Cr = 0, are plotted in figures 14 (a ,  b) .  The differences in the 
temperature profiles seem to be negligible, while the modified form of the surface 
velocity suggests that  a core-region solution based on a local value of A might be 
acceptable. The small influence of the free-surface deformation on the structure of 
the flow field is confirmed for larger values of A and Re. 

4.4. The boundary-layer-type $ow near the lateral walls 

At iarger Reynolds numbers, for A = 0.2, a central region of parallel flow is still 
present. The corresponding u-velocity profile normal to the free surface (figure 9 a )  
maintains, for increasing values of Re, the characteristic shape given by the core 
solution of the asymptotic theory. In  particular, the depth of the velocity inversion 
point with respect to the free surface stays constant, at the value given by the 
asymptotic theory. However, the value of the maximum velocity a t  the free surface 
decreases for increasing Re, owing to  the corresponding decrease of the surface 
temperature gradient, and hence of the driving force, in the core region. Consistently 
with the increasing influence of the convection terms, the surface temperature 
gradients near the lateral walls, particularly near the cold wall, increase with Re, as 
shown by the surface temperature distribution up to Re = 2000 (figure 9b) .  

The larger surface temperature gradient near the cold wall develops a local increase 
in the driving force. This leads to a quite complex stagnation flow field, with a 
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FIWRE 14. Effect of free-surface configuration on surface velocity (a) and 
temperature ( b ) ;  A = 0.2, Re = 125. 

significant acceleration near the wall, positive first, up to the maximum velocity, and 
negative afterwards to meet the zero-velocity boundary condition. A boundary- 
layer-type flow grows downwards along the cold wall, starting from the stagnation 
point a t  the surface. The flow near the hot wall has a similar behaviour, but it is less 
dramatic because the velocity is in the opposite direction with respect to the wall. 
I n  fact, the lower temperature gradient that  develops on the hot side requires a larger 
Re to generate a local maximum in the surface velocity distribution, as clearly shown 
by the surface-velocity diagrams (figure 10) up to Re = 2000. 

In corresponding to the two relative maxima in the surface velocity profile, two 
stream-function maxima appear in the field a t  Re = 2000, while for lower Re the 
maximum is located close to the central section. This behaviour, which is consistent 
with the trend predicted by the asymptotic theory for increasing Re, is analogous 
to the one that occurs in natural convection flow fields a t  increasing Grashof numbers 
(Cormack et aE. 1974). 

4.5. Effect of the aspect ratio 

The condition of small aspect ratio, required in $4.4 for comparison with the 
theorctical results, is here removed to investigate the structure of the flow field in 
a cavity with characteristic dimensions h and 1 of the same order. Hence a value of 
A = 1 (that is a square cavity) has been assumed first, together with a value Cr = 0, 
to study the behaviour of the flow field for a range of Re from 10 to 2 x lo3. 

The u-velocity profile along the normal to the free surface at the central section 
(figure 15a) maintains a similar form, for this entire range of Re, as in the core region 
of the shallow cavity. The surface temperature distribution (figure 15b) shows the 
tendency, already discussed for A = 0.2, to localize, for large Re, the temperature 
gradient near the lateral walls and in particular near the cold wall. Consistent with 
suvh temperature gradients (that is driving forces) the surface velocity distribution 
(figure 16) shows a concentrated growth, a t  increasing Re, first near the cold wall and 
later near the hot wall too. 

While for low Re the entire field strongly ‘feels’ the presence of the lateral 
walls - that is, the flow cannot be subdivided into different regions as for A+O - at 
larger RP a central core region develops. I n  this central region the temperature 
gradient assumes very small values and the surface velocity becomes approximately 
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FIGURE 15. u-velocity profiles in the central region (a )  and surface temperature distribution ( b )  
for increasing values of Re, with Cr = 0, A = 1. 
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FIGURE 16. Surface velocity distribution for increasing values of Re; Cr = 0, A = 1 .  

constant, giving rise to a quite-parallel flow, as in the shallow cavity. The depth dlh 
of the velocity inversion, with respect to  the free surface, in the central region (see 
figure 15a) is slightly smaller than for A = 0.2, but, as in the previous case, it is quite 
independent of Re. 

A narrow cavity, with a large aspect ratio ( A  = 5 )  has also been considered in order 
to determine whether the main features of the flow-field structure, described above, 
are still maintained under these conditions. Considering the relatively small effect of 
the surface deformation on the flow field, a zero crispation number is assumed, while 
a range of Re from lo2 to  2.5 x lo3 is now considered. 

The velocity profiles along the normal to the free surface a t  the central section 
(figure 17a) maintain a characteristic self-similar structure for the entire range of Re, 
as for A = 0.2 and A = 1 .  Their shape, however, differs from the previous cases, the 
fluid motion now being significant only in the upper part of the field. I n  fact the 
velocity goes approximately to  zero in a depth of the order of 1 - nearly $I - while 
very weak recirculations appear in the remaining part of the flow field. The surface 
temperature profiles at the corresponding values of Re are shown in figure 17 (b ) .  

The depth of the velocity inversion wit,h respect to the free surface maintains, in 
the central section, a value of approximately Ah,  quite independent of Re (at least 
for the range considered). As just analysed for the square cavity, a t  increasing Re, 
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FIGURE 17. u-velocity profiles in the central region (a )  and surface temperature distribution ( b )  

for increasing values of Re; Cr = 0, A = 5 .  
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FIGURE 18. Surface velocity distribution for increasing Re; Cr = 0,  A = 5.  

a central region with a low temperature gradient develops, and the surface velocity 
tends to become approximately constant there (figure 18), generating a core region 
of quasiparallel flow. 

5. General considerations on the flow-field structure 
The numerical results described in the previous sections for three substantially 

different values of the aspect ratio give insight into some general characteristics of 
the flow-field structure. The surface-tension gradient, acting as a driving force, 
accelerates the bulk fluid in a layer near the free surface itself. The backflow in the 
remaining part of the cavity gives a maximum of the stream functions a t  a small depth 
under the free surface. At the central section x' = !jl the inversion depth dll  of the 
non-dimensional u-velocity increases with A ,  but is quite independent of Re over the 
entire range considered for the numerical results, as shown by the u-velocity profiles 
in figures 9 ( a ) ,  15(a) and 17(a) respectively for A = 0.2, 1 and 5. The surface 
tangential balance a t  x' = $l requires that 
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FIGURE 19. Non-dimensional velocity at the central section x' = +l as a function of Re; Cr = 0. 

For d / l  approximately constant, the decrease of the surface velocity with Re in 
the central core region (figure 19), is merely due to the decrease, in the same region, 
of the surface temperature gradient, shown in figures 9(b), 15(b) and 17(b). The 
parallelism between the surface-velocity plots for the three different values of the 
aspect ratio occurs because both d / l  and (AT)core/Z depend on A for a given Re. 
Therefore in the central region the surface layer, in a cavity with imposed 
temperature differences between the lateral walls and Prandtl numbers of the order 
of unity, never reaches the transition t o  boundary-layer-type flow predicted by 
Ostrach (1982). Very small Prandtl numbers may, however, significantly modify the 
above behaviour, as will be discussed below. 

Approaching the cold wall, the surface layer generates a stagnation flow field which 
feeds the recirculating lateral region and the backflow towards the hot wall. At 
increasing values of the ratio between convective and diffusive terms a singular 
behaviour of the temperature field appears near the cold wall. The growing 
temperature gradient influences in turn the surface stream velocity, which reaches a 
peak very close to  the cold wall and suddenly decreases to zero, to satisfy the wall 
boundary condition. 

A surface boundary layer appears locally a t  the upper left corner of the enclosure, 
near the cold wall. However, with respect to  Ostrach's (1982) dimensional analysis 
the appropriate lengthscales in the x' and y' directions are here given respectively by 
the thermal boundary-layer thickness ST a t  the surface and by the surface-layer 
thickness S,, that is the inversion depth of the u-velocity profile in the section where 
the surface velocity has a local maximum. 

A measure ofST/l has been derived from the non-dimensional temperature gradient 
a t  the cold wall according to  

The computed values of ST/l, plotted in figure 20, show a regular decrease with Re.  
The correlation of the numerical results, indicated by the straight lines in the figure, 
will be discussed below. An analogous decrease with Re of S,/1 may be observed 
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FIGURE 20. Surface thermal boundary-layer thickness S,/1 as a function of Re. 
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FIGURE 21. u-velocity profiles in the section of maximum surface velocity : 
(a )  Cr = 0, A = 0.2; ( b )  Cr = 0, A = 1. 

(figures 21a, b ) ,  for each value of A ,  by comparing the u-velocity vertical profiles in 
the section where the maximum surface velocity occurs. It is worth emphasizing that 
the trends of S,/1 and 6T/l, as functions of Re, are strictly interrelated, as can be seen 
from the inversion-point distribution (figure 22),  which appears to be, from the 
numerical results, quite insensitive to the value of Re. Hence the section of maximum 
surface velocity seems to get closer to the cold wall, giving a smaller 6, ; much as the 
thermal boundary-layer thickness S, decreases for larger Re. 

The maximum surface velocity as a function of Re is plotted in figure 23 for A = 0.2, 
1 and 5. An asymptotic trend of ukax to constant values both for Re + 0 and Re -tco 
may be observed from the plots. For Re+ 0, ukax coincides with the surface velocity 
a t  the central section, while a possible explanation of the behaviour for Re+co will 
be attempted below, through a dimensional analysis. 

We must admit a t  this point that  the computed values of ST, S, and ukax may only 
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FIGURE 22. Inversion depth of the u-velocity 
profiles; Cr = 0, A = 0.2. 

FIGURE 23. Maximum surface velocity as 
a function of Re. 

be used to  infer the qualitative tendencies of the flow field for growing Re. I n  fact, 
most of the numerical results presented have been obtained a t  relatively low values 
ofRe - so that the boundary-layer flow near the cold wall is not fully established - while 
for the higher values of Re, in order to limit computer time, relatively coarse meshes, 
with corresponding poor accuracy, have been adopted. Nevertheless, the qualitative 
insight into the structure of the flow field and its transition to boundary-layer-type 
flow that has been achieved through the numerical simulation may be sufficient to 
settle a proper dimensional analysis of the flow near the cold wall a t  large Re. 

Thus, if we assume 8, and 8, as lengthscales in the x’ and y’ directions, the surface 
tangential balance in the section where the maximum velocity occurs yields 

(5.3) 

Moreover, in the boundary-layer region near the cold wall the diffusive and 
convective terms are assumed to be of the same order of magnitude in the momentum 
and thermal-energy balances, that  is 

By combining (5.3)-(5.5), it follows that 

(5.4) 

(5.5) 
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It is interesting to note that the thermal boundary-layer thickness given by (5.7) 
coincides with the expression that follows from the classical stagnation-flow solution 
(Schlichting 1960), provided that the maximum velocity (5.3) is assumed as the 
external velocity. Equation (5.7) gives a decrease of 6, with Re-', while the correlation 
of the numerical results (figure 20) is approximated for each value of A by 6T/1= Re-" 
with a < 1. The difference in the power-law exponent may be attributed to the 
numerical overestimation of ST/l for increasing Re, owing to the relatively coarse mesh 
adopted in the computations. Equation (5.8) gives an asymptotic trend of urnax to 
a constant value for Re +a, in good qualitative agreement with the same behaviour 
observed in the correlation of the computed values (figure 23). For A = 0.2, and 
Re = 2000, the computed value of u,,, is clearly underestimated. In  this case, in fact, 
the mesh seems to be too coarse near the cold wall to reach the station where the 
maximum velocity occurs. The above dimensional analysis is physically consistent 
for values of the Prandtl numbers that are not too small. In  fact, for Pr+O the 
conduction terms prevail over the convection ones, in the entire range of Re, so that 
the lengthscale in the y' direction remains 1 and a surface boundary-layer flow may 
also be established in the central region of the enclosure for increasing Re. In  this 
case the results of the dimensional analysis obtained by Ostrach (1982), with the 
assumption of a constant longitudinal temperature gradient, maintain their validity. 

A better knowledge of the temperature field, when the convective heat transfer is 
significant, may be achieved by observing the isothermal lines for the values of A 
considered in the calculations. For A = 0.2 and Re = 2000 the thermal field is 
approximately centrosymmetric (figure 24 b ) ,  and two boundary layers are present 
respectively a t  the upper left corner and a t  the lower right corner of the enclosure, 
resembling, for this feature, a natural-convection flow field. The corresponding 
surface and bottom temperature profiles are shown in figure 24(a).  For A = 1, 
Re = 3000 the isothermal-line field (figure 24d) loses the symmetrical feature, and 
a thermal boundary layer develops only a t  the upper left corner, as confirmed by the 
corresponding surface and bottom temperature profiles (figure 24c). 

For A = 5 ,  Re = 2500 the isothermal-line field (figure 24 f )  in the upper part of the 
cavity maintains the characteristics described for A = 1 ,  while in the lower part the 
isotherms tend to become parallel to the lateral walls as for a pure-conduction thermal 
field. The bottom temperature profile (figure 24e) is, in fact, given approximately by 
a linear distribution. The tendency of the isothermal lines to become horizontal in 
the central region of the enclosure for natural convection at large Grashof numbers 
is partially experienced also in thermocapillary convection for very small values of 
the aspect ratio, while for increasing A the convective flow remains confined in the 
upper part of the field near the free surface. 

A quantitative analysis of the above features may be performed by considering the 
average Nusselt number, which accounts for the heat transfer through the enclosure. 
The average Nusselt number, computed a t  the lateral walls of the enclosure, is defined 
by the expression 

(5.9) 
aT 

Nu= Jo(a,) 5-0  dY, 

which gives Nu = 1 for (dT/ax),,, = 1, that is for pure-conduction heat transfer. The 
numerical values of Nu as a function of Re are correlated in figure 25 for each of the 
considered values of the aspect ratio. For shallow cavities, a t  a fixed Re, the value 
of Nu increases with A (as in natural convection), as confirmed by the asymptotic 
theory and by the present numerical results, at least up to A = 0 . 2 ,  while the thermal 
field approaches the pure-conduction regime, that is Nu+ 1 ,  for A +  0. 
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FIQURE 24. Surface and bottom temperature profiles: (a) Cr = 0, A = 0.2, Re = 2000; (c) A = 1, 
Re = 3000; (e) A = 5, Re = 2500. Isothermal-line computer plot: (b) Cr = 0, A = 0.2, Re = 2000; 
(d) A = 1 ,  Re = 3000; d f )  A = 5, Re = 2500. 
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FIGURE 25. Nusselt number as a function of Re. 

For narrow cavities, as for A = 5, the motion remains confined in a region close 
to the free surface, as shown by the velocity profiles in figure 17(a), and, as a 
consequence, a large part of the thermal field is essentially governed by pure 
conduction. Hence the average Nusselt number tends to  unity as A K O ,  in contrast 
with the behaviour in natural convection, where the average Nusselt number 
maintains a value approximately independent of A ,  as stated by Gill (1966). 
Therefore, in thermocapillary convection the asymptotic tendency to Nu = 1 ,  both 
for A --f 0 and for A +a, assures the existence of a maximum in the Nusselt number 
as 5t function of A .  

Some of the described features of the flow-field structure in thermocapillary flows 
are in good qualitative agreement with the few experimental results achieved with 
prevailing surface-tension-driven convection. In  particular, Schwabe et al. (1979) and 
Chun (1980) give measurements of the surface temperatures in liquid columns, whose 
distribution presents the characteristic S-shape of figure 15 ( b ) .  The quantitative 
differences between the calculated and the measured temperatures - and specifically 
the lowest (highest) measured values of the temperature gradients near the cold (hot) 
wall-may be attributed to  the presence in the experiments of a relatively large 
cooling by surface radiation, as previously shown by the numerical simulation of such 
conditions (see e.g. figure 17 of Graziani, Strani & Piva 1982). 

The measurements reported for A x 2 by Schwabe et al. (1979) confirm the 
observation (see e.g. figure 17a) that  the Marangoni convective flow for A > 1 is 
confined in a layer near the free surface. Schwabe & Scharmann (1981) presented also 
the experimental u-velocity vertical profiles for a plane two-dimensional flow in a 
NaNO, melt with A x 0.6, Pr x 10 and Ma x lo5. A qualitative agreement with the 
computed velocity profiles in the section of maximum surface velocity (figure 21) may 
be observed. A quantitative comparison cannot be attempted considering the 
relevant effect of buoyancy forces and radiation cooling, as seems to be suggested 
by the location near the hot wall of the maximum surface velocity (Schwabe & 
Scharmann 1981). 
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6. Concluding remarks 
The numerical results discussed in $5  for A = 0.2 and A = 1 have shown a small 

influence of the free-surface deformation on the qualitative structure of the flow field, 
a t  least for physically acceptable values of the crispation number (Cr < 0.5) and ix 
contact angles a t  the lateral walls. Very large deformations of the free surface may 
actually occur in technological applications under zero-gravity conditions, for 
contact angles different from in, but also in such conditions the main characteristics 
of the flow field seem to be maintained (Strani & Piva 1982). However, a systematic 
analysis should be conducted to substantiate the present impression of the relatively 
small effect of the free-surface displacement. 

Moreover, the flow-field structure a t  large Re needs a deeper investigation based 
on a more accurate simulation near the lateral walls, in particular the cold one, where 
a boundary-layer-type flow develops. The above considerations suggest an approach 
to this analysis, if the hypothesis of +x contact angle is maintained on the one hand 
with a simpler mathematical model (e.g. in Cartesian coordinates), but, on the other, 
with a more sophisticated numerical procedure (e.g. a multigrid technique) permitting, 
on a locally adaptive mesh, a more accurate solution near the lateral walls. The 
domain perturbation technique suggested by Joseph & Fosdick (1972), and adopted 
in $ 3  in the frame of the asymptotic theory, could hence be applied to determine 
successive O(Cr) corrections to the flow field, avoiding in this way the two-way 
coupling between surface configuration and bulk field which is characteristic of the 
present numerical solutions. 

Finally, the surface diffusivity coefficients A,, ,us, whose influence on the overall 
flow field has been estimated as scarcely significant in a previous study (Piva et al. 
1981), should be reconsidered in the surface balance equations, a t  large Re, when very 
drastic velocity and temperature gradients appear in the surface layer approaching 
the lateral wall. 

R E F E R E N C E S  

BEDEAUX, D., ALBANO, A. M. & MAZUR, P. 1976 Physica 82A, 438. 
BOURGEOIS, S.  V. & BRASHEORS, M. R.  1977 Prog. Astron. Aero. 52, 189. 
CHANG, C. E .  1978 J .  Crystal Growth 44, 168. 
CHANO, C. E. & WILCOX, W. R .  1976 Int. J .  Heat Mass Transfer 19, 355. 
CHUN, C. H. 1980 Acta Astronautica 7, 479. 
CHUNO, c. H. & WUEST, w. 1978 Acta Astronautica 5, 681. 
CLARK, P. A. & WILCOX, W. R. 1980 J .  Crystal Growth 50,461. 
CORMACK, D. E.,  LEAL, L. G. & IMBEROER, J .  1974a J .  Fluid Mech. 65, 209. 
CORMACK, D. E. ,  LEAL, L. G. & SEINFELD, J .  H. 1974b J .  FZuid Mech. 65, 231. 
GILL, A. E. 1966 J .  Fluid Mech. 26, 515. 

HARLOW, F. W. & WELCH, J. E. 1965 Phys. Fluids, 8, 2182. 
HIRT, C. W. & COOK, J. L. 1972 J .  Comp. Phys. 10. 
JOSEPH, D. D. & FOSDICK, R.  L. 1972 Arch. Rat. Mech. Anal. 49, 321. 
LEVICH, V. G.  1962 Physicochemical Hydrodynamics. Prentice Hall. 
NAPOLITANO, L. G. 1978 Acta Astronau,tica 5,  655. 
OSTRACH, S.  1982 Ann. Rev. Fluid Mech. 14, 313. 
OSTRACH, S. & PRADHAN, A. 1978 AIAA J .  16,419. 
PIVA, R. ,  DI CARLO, A. & GUJ, G. 1980 Comp. & Fluids 8. 

GRAZIANI, G., STRANI, M. & PIVA, R.  1982 A& Astronautica 9, 4. 



376 

PIVA, R. ,  STRANI, M. & GRAZIANI, G. 1981 In Proc. AIDAA VI Natl Congr. Rome. 
SCHLICHTINQ, H. 1960 Boundary-Layer Theory. McGraw-Hill. 
SCHWABE, D. 1981 Physicochem. Hydrodyn. 2,263. 
SCHWABE, D. & SCHARMANN, A.  1981 J .  Crystal Growth 52, 435. 
SCHWABE, D., SCHARMANN, A. & PREISSER, F. 1979 In Proc. 3rd Euro. Symp. on Makerial Sciences 

SEN, A. K. & DAVIS, S. .H. 1982 J .  Fluid Mech. 121, 163. 
STRANI, M. & PIVA, R. 1982 Int. J .  Numer. Meth. Fluids 2, 367. 
STRANI, M., PIVA, R.  & GRAZIANI, G. 1982 Thermocapillary convection in a rectangular cavity: 

part 1, asymptotic theory. IMA Rep. 82-5, Istituto di Meceanica Applicata, Universita di Roma. 
YIH, C .  S. 1968 Phys. Fluids 11, 477. 

M .  Strani, R. Piva and G.  Graziani 

in Space, Grenoble. ESA SP-142. 


